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ABSTRACT

It is shown that the discrete system solved by the Spectral Iterative

Technique (SIT) is of Toeplitz or block Toeplitz form, and thus may be more ame-

nable to direct solution in certain cases. In addition, the discrete system

associated with the SIT is shown to be equivalent to a moment method matrix

equation, with basis and testing functions chosen implicitly in the process.

Thus, there is no additional generality in the SIT type of approach compared to

I-, ---- tional method of moments. These statements concern the discretiz?!'or

procedure used within the SIT, and apply whether the SIT is implemented in its

original form or in connection with the conjugate gradient method. Simple

examples of scattering from a single strip and from a periodic array of strips

are used to illustrate the concepts.
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1. INTRODUCTION

The Spectral Iterative Technique (SIT), as developed by Ko, Mittra, Tsao

and Kastner [1], [2], [3], has been applied to a wide class of electromagnetic

scattering problems, including periodic structures such as frequency selective

surfaces [2], [4]. The method has been extended from its original form to

incorporate the convergent conjugate gradient method [4], [5]. However, there

appears to be some confusion concerning the method and its relationship to other

approaches. For instance, Bojarski has claimed that the procedure is identical

to a previous method, called the k-space formulation, originally introduced by

him [6]. Sarkar and Arvas state that the SIT solves for 2N unknowns in

comparison to other iterative methods which solve for N [7]. A common miscon-

ception is that the discretization used within the SIT is somehow more general

than the method of moments, in that it does not require a choice of basis and

testing functions. Recently, Nyo and Harrington [8] concluded correctly that

the SIT discretization requires an implicit choice of basis functions, which is

often some type of sine function. However, Bokhari and Balakrishnan (9] have

since stated that the SIT uses piecewise constant basis functions for the

unknown, and attempted to extend the SIT to incorporate other basis and testing

functions. Because it is felt that these and other attributes of the SIT remain

largely misunderstood, the following is an attempt to give a unified and con-

sistent interpretation of the SIT type of discretization when applied to both

periodic and non-periodic structures. Some of the conclusions that follow have

been previously noted by Nyo and Harrington (8].

The term "Spectral Iterative Technique," as it was originally used [21,

(31, embodied three specific attributes. First, it contained a specific scheme

for discretizing a convolutional integral equation into a discrete system
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(matrix equation) containing discrete convolutional symmetries. Second, it

embodied a specific iterative algorithm used to solve the discrete system

(although this algorithm has been steadily modified in a continuous effort to

improve the convergence). Finally, the implementation of the method involved

the use of a fast-Fourier transform (FFT) algorithm to perform some, but not

necessarily all, of the discrete convolution operations arising throughout the

process. This report will concentrate on the first attribute, i.e., the dis-

cretization scheme employed within the SIT.

In order to understand the details of the SIT discretization and the dif-

ferent interpretations that can be applied to it, two fundamental relationships

must be established. The first is the equivalence between a Toeplitz matrix

operator and a discrete convolution, and the implementation of a discrete con-

volution with an FFT algorithm. The second is the equivalence of the FFT (and

the inverse FFT) of a finite length sequence with the analytical Fourier trans-

form (and inverse Fourier transform) of a discrete, periodic function. These

concepts are familiar in the areas of signal and system analyses, and are

explained in detail in many texts [10], [111, [12].
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2. THE FIRST FUNDAMENTAL RELATIONSHIP

A general discrete convolution is an operation of the form

N-i
em -  j Jngm- n  m-O0, 1, ... , N-1 (2.1)

n-O

where e, j and g are sequences of numbers (lower-case letters will be used to

denote sequences, functions will be assigned upper-case letters). It is easily

verified that Equation (2.1) is equivalent to the matrix equation

go gO -1 "'"2 91- F Ir0 g0  e~
2 e I*1

(2.2)

* .

g0  L -N--

The NxN matrix depicted in Equation (2.2) is a general Toeplitz matrix. Note

that all the elements are described by the (2N-1) elements of the first row and

column. Now, there are two types of discrete convolutions of interest, those of

the circular and linear varieties. Equation (2.1) represents a circular

discrete convolution if the elements of "g" repeat with period of length N so

that

gn-N ' gn n - 1, 2, ..., N-1 (2.3)



4

If the --ements of "g" do not satisfy Equation (2.3), Equation (2.1) is a linear

discrete convolution. Any linear discrete convolution of length N can be repre-

sented by a circular discrete convolution of length 2N-i by zero-padding the

sequence "J" to a length of 2N-I, extending the summation of Equation (2.1) to

length 2N-i, and letting the sequence "g" repeat according to Equation (2.3) in

order to fill in the required values. (In this context, "g" represents an

infinite periodic sequence with period of duration 2N-1.) It is necessary to

convert Equation (2.1) to a circular convolution in order to make use of the

FFT, as explained below.

The fast-Fourier transform is an efficient way of implementing the

discrete-Fourier transform

~2inkN-i1
in gke  " 0, 1, ... , N-i (2.4)

k=nO

The inverse discrete Fourier transform is defined

N-1 2wnk
gk N -W 1 gne  k - 0, i, ..., N-i (2.5)

ninO

For notational purposes, we use

- FFTN(g) (2.6)

g - FFTN'(Q) (2.7)

to denote the discrete Fourier transform pair for an N-length sequence.

(Lower-case letters without subscripts represent column vectors.) The discrete

convolution theorem [131 states that if Equation (2.1) is a circular discrete

convolution of length N, it is equivalent to
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in" 3ngn n - 0, 1, ..., N-1 (2.8)

If Equation (2.1) is a linear discrete convolution, the equivalence holds

provided that the sequence "J" is zero-padded to length 2N-i, and the FFT's of

Equation (2.8) are of length 2N-i.

Thus, the discrete convolution operation of Equation (2.1) is equivalent to

the Toeplitz matrix multiplication of Equation (2.2). Furthermore, either (or

both) can be implemented using the FFT and inverse FFT algorithm according to

e - FFTN1 {FFTN(i)FFTN(g)} (2.9)

(The product of the two column vectors in Equation (2.9) is an ordinary matrix

scalar product, without any complex conjugation introduced.) This establishes

the first fundamental equivalence discussed above, namely, that an N-th order

Toeplitz matrix operator can be implemented with the FFT and inverse FFT. If

the discrete convolution is of the circular type, it can be implemented with

FFT's of length N; if it is of the linear type, it requires FFT's of length

2N-1.

The above remarks are easily generalized to two or three dimensions. A

two-dimensional discrete convolution is an operation of the form

e N-i M-i j __ 1 . 0, i, ..., N-i (2.10)
pq nIO I~. Jm p-n, q-m qn=0 itx

This operation is equivalent to the matrix operation
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!0 G 1 G

-.. . . .

j, _0 Gr 1 EO

- =2 LO iO

!0 - -

where each element of the NxN block Toeplitz matrix of Equation (2.11) is itself

an xM Toeplitz matrix of the form depicted in Equation (2.2). The relationship

asablished in Equation (2.9) can be extended to multidimensional probleme

an obvious manner.
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3. THE SECOND FUNDAMENTAL RELATIONSHIP

The second fundamental relationship mentioned above is discussed in detail

by Brigham [10]. Suppose we have a discret.e function of the form

A(x) - ana(x - n&x) (3.1)
nD-w

where the coefficients of the Dirac delta functions repeat in a periodic manner,

i.e.,

an+N m aa (3.2)

We define the Fourier transform integral as

F{H(x)} - i(f) - f H(x)e-J2lfXdx (3.3)

and the inverse transform as

F-{H(f)} - H(x) - f H(f)ej2 fxdf (3.4)

The Fourier transform of the discrete, periodic function of Equation (3.1) will

also be a discrete, periodic function

A(f) Af [ m(f - ,&f) (3.5)

where

- (3.6)
N~x
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N-1 -N

am I ane m - 0, 1, ..., N-1 (3.7)
n-O

Observe that the coefficients "i" are exactly the numbers that would be obtained

by applying the FFT Algorithm to one period of the sequence "a." In other words,

the FFT algorithm is equivalent to the analytical Fourier transform of discrete,

periodic functions. The same is true for the inverse FFT. This is the second

fundamental relationship required for an in-depth analysis of the SIT.

The above relationship enables us to model the effects of the FFT algorithm

with the analytical Fourier transform, provided that we first convert the func-

tions under study to discrete periodic functions. This is accomplished as

follows. Consider the functions

S(x) - I S(x - Mx) (3.8)

P(x) - 8(x - qAX) (3.9)
q-..m

and their Fourier transforms

S(f) - AF 8 5(f - m&F) (3.10)

i(f) "Af I .(f - qf) (3.11)
q--a

where

AF ---- (3.12)
Ax
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Af (3.13)
AX

If an arbitrary function of x is multiplied by SWc), it is converted to a

discrete function, i.e., sampled at regular intervals Ax. If an arbitrary func-

tion is convolved with P(x), where the continuous convolution is defined

A(x) * B(x) f A(x')B(x - x')dx', (3.14)

the result is a periodic function of x with period AX. In the Fourier transform

domain, convolution with S(f) produces a periodic function with period AF;

multiplication with P(f) produces a discrete function sampled at intervals Af.

In practice, the periods and sampling intervals are related by a integer M, so

that

AX - MAx 
(3.15)

AF - M~f (3.16)

3ased upon the above relationships, it is clear that simply sampling an

arbitrary function at N equally spaced points and applying the FFT to the

resulting numbers produces the same result as applying the analytical Fourier

transform to the discrete, periodic function created from the same N coef-

ficients. The following sections use the preceding equations to convert con-

tinuous functions to discrete, periodic functions in order to model the effects

of the FFT and inverse FFT when used in this manner.



10

4. THE IDEA BEHIND THE ORIGINAL SPECTRAL

ITERATIVE TECHNIQUE

The basic idea behind the original Spectral Iterative Technique (SIT)

involved the approximation of a continuous Fourier transform using the FFT

algorithm, within an iterative numerical solution of a convolutional integral

equation. Expressed in one dimension, the convolutional integral equation takes

the form

b
E(x) - f J(x')K(x - x')dx' a < x < b (4.1)

a

where J(x) represents the unknown and E(x) and K(x) are given. Note that

Equation (4.1) is only valid over the range (a,b). If the equation were valid

over (-i,.), it could be written

E(x) J(x) * K(x) -W < x <-M (4.2)

Using the Fourier transform defined in Equations (3.3) and (3.4) and the con-

volution theorem [121, Equation (4.2) can be expressed

Ef) - J(f)K(f) (4.3)

Under suitable restrictions on the analyticity of E and K, the solution is given

by [14]

J(x) - F- I ( f)) (4.4)

Unfortunately, the equality in Equation (4.2) does not hold outside the range

(a,b). Thus, the above solution process is not applicable in this case.



Although the above procedure is not valid for this example, it illustrates

the advantage of working with the Fourier transforms of J(x) and K(x), in order

to avoid the convolution of Equation (4.2) in favor of the multiplication of

Equation (4.3). This concept can not be implemented directly, as stated above,

but it can form the basis of an iterative solution process. In other words, the

solution of Equation (4.1) could be obtained in an iterative manner, beginning

with an initial estimate of the unknown J(x) and using Equation (4.3) whenever

necessary to perform the convolution operation. Although this can be posed as an

analytical technique involving the continuous Fourier transform, in practice

this would be a numerical method involving the FFT to approximate the Fourier

transform. Thus, the process now requires the discretization of the range and

domain spaces of the integral operator. The idea is to express the operator in

the form

f J(x')K(x - x')dx' a FFTN 1FFTN(j)j (4.5)
a

where the sequence "J" contains coefficients representing the unknown function

J(x) and the sequence "j" is a discrete representation of the transform K(f).

We will return to the construction of "i" shortly; in fact, most of the

remainder of this report will include an evaluation of different approaches for

constructing the sequence. But first, consider Equation (4.5) in the context of

some of the preceding discussion. Because we have discretized the continuous

operator so that it now maps a sequence of length N to another sequence of

length N, it can be represented by an NxN matrix. In addition, it is clear from

the first fundamental equivalence relationship established in Section 2 that the

operation described by Equation (4.5) is identical in form to that of Equation

(2.9), and thus describes a circular discrete convolution of the sequences "J"

and "g," where "g" is the inverse FFT of the sequence "io" We can conclude from
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this that the discretization used within the SIT converted the original con-

volutional integral equation to a matrix equation having the Toeplitz structure

illustrated in Equation (2.2). Note that the primary objective of the SIT is

not to produce an explicit NxN matrix to be solved directly but rather to solve

the discrete system iteratively, exploiting the FFT algorithm by using the form

of the discrete operator given in Equation (4.5).

The basic idea that a discrete system with the Toeplitz type of structure

can be solved iteratively using the FFT algorithm to implement the matrix opera-

tor is also the basis of the "k-space" method of Bojarski (15], which was

developed prior to the SIT. However, the discretization used within the SIT is

different from that employed by Bojarski, because of the manner in which the

sequence "j" is constructed. Bojarski constructed "i" by applying the FFT to a

sequence "g" obtained directly from the kernel K(x). The uiscreLzation used

with the SIT required the sequence "i" to be constructed by sampling the trans-

form K(f). As stated above, these two methods are not equivalent, because the

FFT and the continuous Fourier transform are equivalent only if applied to func-

tions that are discrete and periodic. These functions do not satisfy these cri-

tera. It is worth noting that Bojarski specifically recommended against the

-.)proach later used within the context of SIT to construct the sequence "gi

[16]. In order to interpret the difference between these two approaches, the

following section considers the conventional discretization procedure (a

generalization of the approach originally used by Bojarski, now known as the

discrete-convolutional method of moments (17], [181) and compares this with the

approach used within the SIT.

The above overview attempts to motivate the SIT type of approach. It

should be clear that any matrix equation with this type of structure can be

solved iteratively in an identical manner, using the FFT to perform the
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discrete-convolutional operator. The primary distinction between the SIT

approach and others that work with matrix equations having similar symmetries is

the manner in which the sequence "i" is constructed. In other words, the unique

feature of the SIT is the sampling process that produces the sequence "g"

directly from the analytical Fourier transform K(f). In some cases, specifically

those involving periodic geometries, this approach can simplify the problem

formulation. In situations where the Fourier transform of the kernel K(x) is

much more convenient for numerical calculation than K(x) itself, the SIT

approach can be computationally advantageous. In other cases (i.e., non-

periodic geometries in free space) the SIT approach can be more difficult to

implement in a "correct" fashion. These issues will be investigated in the con-

text of specific examples in the remainder of this report.
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5. A COMPARISON OF THE MOMENT-METHOD AND SIT EQUATIONS

Consider the convolutional integral equation of Equation (4.1). E and K

are known over the interval of interest and J is an unknown function to be

determined. Equation (4.1) can be used to describe scattering from a strip or

wire of constant curvature, and is representative of a variety of other electro-

magnetic scattering problems. A discretization of Equation (4.1) according to

the moment-method procedure requires that J be replaced by a finite expansion of

the form

N
J(x) I j nBn(x)(5)

n-I

where the {Bn(x)} are known basis functions and the j unknown coefficients. If

the expansion is substituted into Equation (4.1) and the resulting equation is

made orthogonal to N independent testing functions {Tm(x)}, the result is a

matrix equation of the form

N
em - ngm,n (5.2)

n-i

where

b
em - f Tm(x)E(x)dx (5.3)

a

and

b b
gm n Tm(X) f Bn(x')K(x'x')dx'dx (5.4)

a a
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In the general case, gUM represents a fully populated matrix whose NxN entries

satisfy no symmetry or redundancy condition.

If the choice of basis and testing functions is restricted to the form

B (X) - B(x - x ) (5.5)

T m(x) - T(x - x M) (5.6)

where

xn - x0 + nx (5.7)

and if the basis and testing functions do not overlap the endpoints of the

interval (ab), the discrete system described in Equation (5.2) can be written

as

N
ea Ij ngm- n  (5.8)

n-1

which is exactly the discrete convolution form discussed in Section 2. Because

of this result, the moment method application embodied in Equations (5.5) -

(5.8) is denoted the discrete-convolutional method of moments, after Nyo and

Harrington [17].

The discretization of Equation (4.1) according to the SIT procedure

requires the direct sampling of the Fourier transform K(f). In order for the

FFT to be used within the approach, the problem must be expressed as a circular

discrete convolution. Equation (5.8) represents a circular discrete convolution

only if Equation (4.1) represents a periodic problem, such as a frequency selec-

tive surface (21, [4], and then only if the summation is extended over the

entire period. Thus, zero padding must be incorporated into the process.
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For the moment, consider the nonperiodic case. The simplest approach used

within the context of SIT is to directly sample the function K(f) at the

required discrete values of f, and use these numbers for the sequence "g." For

purpose of analysis, we can express this process in general fashion in terms of

a discrete, periodic "spectral Green's function" of the form

SSIT(f) - S(f) * [P-fw-fim) (5.9)

where K(f) represents the analytical Fourier transform of K(x), S(f) and P(f)

are defined in Equations (3.10) and (3.11) respectively, and W(f) is a function

used to window in the transform domain. In the simplest case, the windowing

function does nothing more than truncate the function K(f) to one period of the

periodic comb function i(f), so that no overlap is introduced by the couvoluon

with S(f). As we will see below, however, the windowing function is an impor-

tant variable in the process, and other choices for W(f) might be desirable.

During each iteration step, the normal implementation of the SIT requires

the multiplication of the sequence "3" (constructed from the FFT of the sequence

"J" representing the unknown function J(x) of Equation (4.1)) with the sampled

values of aSIT(f). The inverse FFT is then applied to transform the sequence back

to the spatial domain. Because of the fundamental relationships of Sections 2

and 3, we know that this is equivalent to the Toeplitz matrix multiplication

presented in Equation (2.2). Furthermore, we can explicitly construct the matrix

elements by modeling the inverse FFT of the sequence "j" with the formulas

presented in Section 3. Since S(f) and P(f) are comb functions, this can be ex-

pressed in terms of the discrete function

GSIT(x) - P(x) * [S(x){W(x) * K(x)l] (5.10)
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The matrix elements from Equation (5.10) are given by

Wn {W(x) * K(x)I (5.11)

q=-ft x - (m - n)Ax - qAX

If the moment-method process described in Equations (5.1) to (5.8) is

generalized to produce an infinite-periodic sequence for comparison to Equation

(5.10), the result is

G H(x) - P(x) * [S(x)U(x){T(-x) * B(x) * K(x)l] (5.12)

or, equivalently,

-M . T(-x) * B(x) * K(x)l (5.13)x - (m - n)Ax

B(x) is the basis function introduced in Equation (5.5), and T(-x) is a space-

reversal of the testin, function T(x) appearing in Equation (5.6). The notable

difference between the form of Equations (5.10) and (5.12) is the appearance of

U(x) in the moment-method function. U(x) is necessary to truncate the spatial

kernel K(x) to the period in order to avoid aliasing errors when the fictitious

periodicity is introduced through the convolution with P(x). For instance, U(x)

may be of the form

1 xc(a,b)
U(x) oh (5.14)

0 otherwise

Of course, the period may be chosen to be larger than the interval (a,b), and

U(x) may vary accordingly. The aliasing errors due to the absence of U(x) are

clearly illustrated by the infinite summation in Equation (5.11).
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There are several conclusions that can be drawn from the above comparison.

Before expanding on these, it is worth noting that the period size is a para-

meter to be selected by the user. For nonperiodic problems of the type

described above, the SIT approach according to Equation (5.9) actually involves

the approximation of a single scatterer by a periodic array of scatterers.

Thus, the period size must be initially very large in order to accurately model

a single scatterer. (Once the sequence "g" is constructed in the spatial domain

via the inverse FFT, it can be truncated to a much smaller size before the com-

putationally intensive iteration process begins.) In the limit as the period

size approaches infinity, the discrete systems constructed by the SIT and the

moment method are equivalent provided that

W(x) - T(-x) * B(x) (5.15)

This fact was recently noted by Nyo and Harrington [8].

In view of the above comparison, the SIT discretization could be gener-

alized to incorporate a function corresponding to the U(x) used with the moment

method. This could greatly reduce the array sizes and initial computation

required to implement the SIT. However, 5(f) appears within a convolution in

the spectral domain, and the desired 5(f) (the transform of Equation (5.14)) is

a so-called sinc function

a(f) - sin (Wf/Af) (5.16)
Wf

with support over the entire x-axis. Because of this, in general it is dif-

ficult to include the convolution with U(f) in a numerical implementation.

There appear to be two ways in which the effects of U(x) could be included

approximately in the SIT procedure. The first is simply to extend the period to
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some large interval, and approximate the transform U(f) by a Dirac delta func-

tion (which it approaches as the period becomes sufficiently large). This is the

technique used in the literature [1], [31, [51. (Note that a given function is

not altered after convolution with a delta function, and thus Equation (5.9)

suffices to describe the process.) An alternate approach is to approximate the

rectangular truncation function of Equation (5.14) with a smoother function, in

order to obtain a U ap(f) with finite support (at least approximately). The

smoother U ap(x) must be sufficiently flat over the spatial interval of interest,

in order to avoid distorting the desired spatial Green's function, yet yield a

transform which can be conveniently included in the convolution operation of the

generalized discrete spectral Green's function

GSITf) - S(f) * Uap(f) * [P(f)W(f)K(f)J (5.17)

An additional advantage of the second approach is that a singularity often pres-

ent in K(f) is explicitly smoothed by convolution with U ap(f).

Because the windowing function W(f) appears as a multiplication with K(f),

the SIT approach can easily incorporate a variety of windowing functions. Based

upon the comparison with the moment method, it appears that a primary con-

sideration for the choice of W(f) should be the corresponding spatial domain

basis function selected implicitly in the process. For instance, the choice of

a rectangular window for W(f) corresponds to the implicit choice of a sine func-

tion for the basis function. Since sine functions have unbounded support, they

do not appear to be appropriate approximations to subsectional basis functions,

and will apparently have considerable support outside the original domain of

interest (i.e., outside the original scatterer). Typical subsectional basis

functions, such as a piecewise constant or a triangle function, thus correspond

to windowing functions W(f) with unbounded support, which seems to suggest that the
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"1proper" windowing function to use with the SIT is one which allows considerable

aliasing in the spectral domain. Thus, the incorporation of a windowing func-

tion that corresponds to a subsectional basis function may be complicated by the

need to deliberately overlap many periods of the function K(f) when constructing

GSIT(f).

By analogy with the moment-method procedure, it is obvious that a testing

function could be incorporated into the SIT process, as may be necessary if the

excitation in a given problem is highly localized. The choice of W(f) can be

made to correspond to both a basis and a testing function, as indicated by

Equation (5.15). The excitation sequence "e" can be computed according to

Equation (5.3).

Up until now, we have considered only nonperiodic problems. If Equation

(4.1) represents a periodic problem, it can be discretized with the SIT approach

without the detrimental effects introduced by the periodic nature of the FFT

algorithm. Since the Fourier transform of a periodic function is discrete,

Equation (5.9) simplifies to

aSIT~f) - S(f) * [W(f)K (fl (5.18)

and Equation (5.11) is given by

SIT . W(x) * K W) (5.19)
ra-n P x - (m -n)x

Thus, the SIT process and the moment-method process produce equivalent discrete

systems for the periodic case as long as the windowing function is chosen to

satisfy Equation (5.15). Since the function K (x) is normally a slowly con-
p

vergent infinite summation in the periodic case, the SIT process might be far
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more efficient than the conventional moment method from a computational stand-

point.

To summarize, two discretization procedures have been outlined. The first,

the discrete-convolutional method of moments, involves the explicit introduction

of basis and testing functions in the spatial domain. The second, the SIT type

of discretization, involves sampling the Fourier transform of the kernel or

Green's function in anticipation of the use of the inverse FFT algorithm to

return to the spatial domain. (In practice, the sequence "i" is used directly in

the transform domain; the inverse FFT is present in the analysis because of the

first fundamental relationship established in Section 2.) By modeling the FFT

algorithm with the functions introduced in Equations (3.8) - (3.13), an equiva-

lence is made between the SIT and momenr-mathod discretizations. It follows that

the SIT approach involves implicit basis/testing functions introduced through

the windowing function W(f).

The easiest way to implement the-SIT is to directly sample K(f) at the

desired discrete values of f. This approach is equivalent to the use of a

rectangular window W(f), and produces a spatial domain matrix equation that

could have been obtained from sinc basis functions (to be more precise, the con-

volutions of the implicit basis and testing functions are sinc functions). This

simple approach appears to be the technique consistently used in the literature

[1] - [5]. Here, we have suggested an "extended" form of the SIT, which permits

the incorportion of any basis and testing functions into the process. If it is

desired to incorporate subsectional basis functions, Equation (5.9) will involve

an infinite summation.

With regard to the SIT, the above remarks assume that the spatial period is

taken to correspond to the true period (in the case of a periodic structure) or
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to be much larger than the scatterer and the wavelength (in the case of an indi-

vidual scatterer). In addition, an appropriate amount of zero-padding must be

incorporated into the process. The SIT discretization introduces a fictitious

periodicity into the modeling process for individual scatterers, and this effect

is examined in the following section for the example of scattering from an indi-

vidual strip.
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6. TM-WAVE SCATTERING FROM A STRIP

As an example of the implementation of the moment-method and the SIT proce-

dures, and a means to compare the two to develop guidelines for the use of the

latter approach, consider the problem of TM-wave scattering by a perfectly con-

ducting flat strip. The integral equation for a one-wavelength strip has the

form

0.95
E(x) - f J(x')K(x - x')dx' -0.05 < x < 0.95 (6.1)

-0.05

The kernel in this case is given by

K(x) - IH (2)(2WIxI) (6.2)

and its Fourier transform is

•Il < 1J4w/ I- f 2

1 __ _ I > ' 1(6.3)
4w/f 2 _ I

If ten basis functions are used with the moment-method procedure, specifically

piecewise constant or "pulse" functions defined by

1 xe (-0.05, 0.05)
B(x) - (6.4)B~x)a (0 otherwise(64

and if the testing functions are Dirac delta functions

T(x) - 8(x) (6.5)
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where

xn - -0.1 + n(0.1) n - 1, 2, ..., 10 (6.6)

then the numerical values of the spatial domain sequence representing "g" are

given in Table I. This sequence was computed from Equation (5.4), and is

equivalent to the values of the discrete spatial Green's function G MMx)

described in Equations (5.12) or (5.13).

Consider an SIT discretization of Equation (6.1), assuming that the func-

tion U ap(f) is taken to be a Dirac delta function as discussed in Section 5. A

rectangular window is used for W(f), which means that we are specifically

choosing alternate basis functions than those employed in the moment-method

system above. Thus, the data from Table I are not the numerical values which

would be produced by the SIT procedure even if an infinite amount of zero-

padding was incorporated into the process, because Bx) and W(f) are not a

transform pair. However, this choice for U ap(f) and W(f) is the easiest to

incorporate into the SIT approach, and appears to be the approach used in the

literature (1] - [5].

Table II shows the values of the sequence "g" produced by the SIT procedure

for a period length of 102.3 wavelengths (M=1023). This table also shows the

relative difference between the data of Table I and the SIT data. In spite of

the fact that we do not expect perfect agreement, the numerical values are simi-

lar. From a study using a variety of strip sizes, and incorporating a transform

pair for the basis function and windowing function, it appears that the equiva-

lent spatial period must exceed 25 wavelengths in order to obtain agreement

within five percent (in the first few values of the sequence "g") between the

moment-method and SIT numbers. The period must exceed 100 wavelengths if the
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TABLE I

DISCRETE SPATIAL DOMAIN SEQUENCE PRODUCED BY MOMENT METHOD

WITH PULSE BASIS FUNCTIONS AND DIRAC DELTA TESTING FUNCTIONS

FOR A STRIP OF LENGTH 1 X WITH 10 CELLS.

n Igi jdegrees)

0 0.0436 -34.67

1 0.0237 -71.33

2 0.0171 -111.38

3 0.0141 -149.03

4 0.0123 174.06

5 0.0110 137.49

6 0.0101 10..13

7 0.0093 64.81

8 0.0087 28.59

9 0.0082 -7.58
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TABLE II

DISCRETE SPATIAL SEQUENCE PRODUCED BY THE SIT USING

A RECTANGULAR WINDOW W(f) WITH M-1023.

n Igi (Ldegrees) % diff. as
compared to
Table I

0 0.0433 -35.27 1.2 %

1 0.0237 -72.46 2.0 %

2 0.0176 -114.36 6.0 %

3 0.0139 -148.46 2.0 %

4 0.0117 173.20 5.2 %

5 0.0104 132.65 10 %

6 0.0101 96.03 8.9 %

7 0.0097 62.57 5.3 Z

8 0.0085 29.60 2.7 %

9 0.0075 -8.72 9.2 %
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first few values of the sequence are to agree within one percent [18]. In

general, it appears that the difference between the moment method and SIT

sequence is primarily due to the fictitious periodic nature of the SIT represen-

tation, and not the difference in basis functions. In other words, the SIT

sequence based upon the implicit basis function

W(x) . sin (wx/Ax) (6.7)

agrees well with the sequence produced by the moment method with pulse basis

functions (assuming the aliasing effects are suppressed), at least for this

example. Since it appears that most of the previous results obtained with the

SIT used implicit basis functions of the form of Equation (6.7), this may

explain the reported success of the procedure [11 - (51, (9].
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7. SCATTERING FROM A PERIODIC STRIP GRATING

Consider the problem of scattering of a plane wave from an infinite,

periodic strip grating. The integral equation has the form

0.95
E(x) - f J(x')K (x - x')dx' -0.05 < x < 0.95 (7.1)

-0.05 p

where the strip widths are taken to be one wavelength. The difference between

Equation (7.1) and (6.1) is the kernel

Kp(x) - a (2 (22Ix - qXl)e-JiB qAX (7.2)

where AX represents the spatial period, ad the parameter S, a function of the

incident field, is given by

0 - 2, cos e (7.3)

for a plane-wave incident field propagating in the e direction, where e - 0 is

+i and 8 - w/2 is +j (assuming the strip lies in the y - 0 plane, and is infi-

nite is extent in the z direction). The Fourier transform of the kernel is

(f) - i(f + .L)i(f) (7.4)
P 2w

where K(f) is the transform of the nonperiodic kernel, as defined in Equation

(6.3), and P(f) is defined in Equation (3.11).

Supposing that the spatial period is 1.5 wavelengths, and the incident

field is normally incident upon the strip grating, the numbers computed from the

conventional moment-method formulation for pulse basis functions and Dirac delta
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testing functions are given in Table III. In order to compute these, it is

first necessary to find a way of accelerating the convergence of the series of

Equation (7.2), as otherwise the summation converges too slowly to be useful.

Poisson summation formulas have been tabulated for this purpose 1191. Note that

the values appearing in Table III correspond to the definition of Equation

(5.13), with K(x) replaced by K (X).

The corresponding sequence from the SIT using a rectangular window W(f) is

given in Table IV. In this case, the sequence "i" is constructed from the

formula given in Equation (5.18). Because of the rectangular window employed for

this example, the expression simplifies to the form

i (nAf) n - 0, 1, ... , 7(nK(115 - n]Af) n - 8, 9, ..., 14

where K(f) is defined in Equation (6.3). After "g" is computed, the inverse FFT

is used to construct the data shown in Table IV. Note that the sequences of

Tables III and IV should differ, because the SIT system actually uses sinc basis

functions.

We next consider the "correction" of the SIT in order to incorporate pulse

basis functions instead of the sinc function. This requires that we use the

window

( sin (wf/af) (7.6)
Wf

when constructing the discrete spectral Green's function

GSIT(f) - S(f) * [W(f)K p(f)] (7.7)
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TABLE III

DISCRETE SPATIAL DOMAIN SEQUENCE PRODUCED BY MOMENT METHOD

WITH PULSE BASIS FUNCTIONS AND DIRAC DELTA TESTING FUNCTIONS

FOR A PERIODIC STRIP GRATING WITH PERIOD EQUAL TO 1.5 x AND

STRIP SIZE EQUAL TO 1.0 A, USING 10 CELLS ON THE STRIP.

THE INCIDENT FIELD IS A TM PLANE WAVE AT NORMAL INCIDENCE.

n lgi 4f. (degrees)

0 .0360 -32.70

1 .0184 -80.86

2 .0170 -119.67

3 .0146 -138.67

4 .0089 -154.62

5 .0028 140.96

6 .0073 57.51

7 .0115 48.00

8 .0115 48.00

9 .0073 57.51
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Due to the convolution with i(f), these values can be a-plicitly written as

-SIT
gn FW(f)K(f)j (7.8)

f - mAF + af --2w

Thus, in order to incorporate pulse basis functions into the SIT procedure, we

actually must superimpose the contributions from the overlapping functions

according to the summation given in Equation (7.8). For the above example, with

period of 1.5 wavelengths and a normally incident plane wave, the transform

domain sequence must be computed according to

-SIT AEF I" . sin (wf/AF))

f - mAF + nf

(The proper branch of the square root must be used, as indicated in Equation

6.3.) Table V shows the values of the spatial sequence "g" obtained by this

process. In this case, there is perfect agreement between the moment-method

sequence from Table III and the SIT sequence from Table V. In fact, the

acceleration procedure used in the constructivn ol Ta61e 11 requires the

Green's function to be Fourier transformed and exchanges the summation in the

spatial domain with the explicit inverse Fourier transformation (which is itself

a summation in this case, but faster converging). The basic difference in the

construction of Tables III and V is that the FFT algorithm is used explicitly to

compute the inverse transformation of "i" for Table V. Here, the functions are

discrete and periodic; thus, the FFT and Fourier transforms are equivalent.

We have investigated the difference between the discrete systems produced

by the SIT and moment method for the example of TM-wave scattering by a periodic
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TABLE V

DISCRETE SPATIAL DOMAIN SEQUENCE PRODUCED BY THE EXTENDED SIT

IN ORDER TO USE IMPLICIT PULSE BASIS FUNCTIONS AND DIRAC DELTA

TESTING FUNCTIONS, FOR A PERIODIC STRIP GRATING WITH PERIOD

OF 1.5 X AND A NORMALLY INCIDENT TM PLANE WAVE.

n Igi 4& degrees)

0 .0360 -32.70

1 .0184 -80.86

2 .0170 -119.67

3 .0146 -138.67

4 .0089 -154.62

5 .0028 140.96

6 .0073 57.51

7 .0115 48.00

8 .0115 48.00

9 .0073 57.51
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strip grating. An "extended" SIT procedure is demonstrated that can be used to

produce a sequence "g" that is identical to the sequence produced by the moment

method for any choice of basis and testing functions. It turns out that this

extension of the SIT is actually equivalent to one of the standard Green's func-

tion acceleration techniques. In previous work [1] - [51, a simple rectangular

window was often employed within the SIT, because this circumvents the need to

sum a series to compute "j." The implicit basis functions used in connection

with a rectangular window are sinc functions, which suggests that the results

for the SIT approach may not be in good agreement with those of the moment

method if the latter uses subsectional basis and testing functions. However,

for the example of a TM wave incident upon a strip grating, the two approaches

produce almost identical numbers. We would not necessarily expect this to be

the case for other types of problems, however, especially those involving deri-

vatives on the kernel. For those problems, it may be necessary t3 use the

extended SIT discretization procedure.
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8. SUMMARY

An interpretation of the discretization used within the Spectral Iterative

Technique (SIT) is presented that attempts to clarify the relative similarities

and differences of the SIT and the conventional moment-method approaches. In

addition, an extension of the SIT is developed to enable the incorporation of

explicit basis and testing functions into the procedure. Both individual scat-

terers and periodic scatterers are considered, as the method is somewhat dif-

ferent for these two types of problems.

For an integral equation of the form

b
E(x) f f J(x')K(x - x')dx' a < x < b (8.1)

a

the discrete system generated by the SIT is Toeplitz (or for multidimensional

problems, block Toeplitz with Toeplitz elements). For integral equations of the

form

b
E(x) - R(x)J(x) + f J(x')K(x - x')dx' a < x < b (8.2)

a

the diagonal elements of the system differ from the purely Toeplitz form, but

the off-diagonal entries are Toeplitz in structure. Since routines are ava4l-

able for treating Toeplitz systems by direct methods (201 - [221, it may be more

efficient to solve the discrete systems directly, regardless of the manner in

which the matrix elements are constructed. In other words, it may be more

efficient to construct the discrete system using the SIT approach, but then to

solve the system using a special Toeplitz routine (instead of an iterative

algorithm).
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Because of the implicit basis and testing functions introduced by the SIT

discretization, there is no additional generality in using the SIT as opposed to

the conventional method-of-moments formulation. Numerical results generated for

the two examples of Sections 6 and 7 indicate that the SIT systems can be a good

approximation to the moment method systems, even if the implicit basis functions

appear to be inappropriate for the problem under consideration. Thus, although

there is no additional generality to the SIT, the method may be computationally

favorable to the conventional approaches. This tradeoff in efficiency can only

be evaluated in the context of specific problems. For the two examples con-

sidered here, there was no clear advantage to the SIT formulation. In fact, for

the individual scatterer examined in Section 6, there is clearly appreciable

error introduced by the SIT discretization unless the equivalent spatial periods

are on the order of 100 wavelengths (not a practical size for anything except

one-dimensional structures). Problems best suited to the SIT formulation are

periodic structures and any type of problem where the Fourier transform of the

kernel is much easier to compute than its spatial domain counterpart.

The above interpretation of the SIT is an expansion of a brief exposition

from reference [18]. A similar but less complete analysis was presented pre-

viously in reference (8].
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